
6
C H A P T E R

DESIGNING TABLES

AND FORMS

isplaying text is essential to web page development. So far, you have

learned how to display text in headings, paragraphs, and lists and to

emphasize text structure using an assortment of other elements. Another

way of organizing text is using tables. Tables can help you streamline the display

of any data that can be organized in rows and columns. Another important aspect

of web development is the collection of input from the people who visit your web

pages, which is essential to the creation of interactive websites. If you have already

used search engines or purchased anything online, you already have plenty of

experience working with forms. This chapter will expand your web development

skills by teaching you how to display information in tables and collect it using

forms.

Specifically, you will learn how to:

• Organize and display data using forms

• Create forms with borders, row, and column headers, and merged cells

• Collect user input using forms

• Work with different types of text fields, buttons, and drop-down lists

• Improve form organization using labels and fieldsets

D

PROJECT PREVIEW: THE NUMBER GUESSING GAME

This chapter’s web project is the Number Guessing Game. This game challenges the player to

try to guess a randomly generated number in the range of 1 to 10 in as few guesses as possible.

The player makes guesses by clicking on one of ten radio controls that make up the applica-

tion’s form, as demonstrated in Figure 6.1.

FIGURE 6.1

The game is made
up of a form that

consists of 10
radio controls and
a button control.

Once the player has selected the radio control representing his guess, the button control

labeled Check Guess must be clicked. The game will then compare the player’s input against

the game’s secret number in order to determine whether the player has won the game or

needs to keep on playing. Figure 6.2 shows an example of the message that the game displays

in the event the player’s guess was higher than the secret number.

Game play continues until the player finally guesses the secret number. Once the correct

number has been selected, the message shown in Figure 6.3 is displayed, informing the player

that he has won the game.

HTML, XHTML, and CSS for the Absolute Beginner144

FIGURE 6.2

The player can use
the messages

provided by the
game to help guide

his next move.

FIGURE 6.3

The message
congratulates the

player and
explains how to

restart the game.

USING TABLES TO DISPLAY INFORMATION

Tables provide a convenient way of displaying collections of related data that lend themselves

to a tabular format. To create tables, you need to learn how to work with three elements:

table, tr, and td. The table element is made up of the <table> tag, which marks the beginning

Chapter 6 • Designing Tables and Forms 145

of a table, and the </table> tag, which marks the end of a table. Inside the table element,

rows are established using the <tr> and </tr> tags and individual cells within those rows are

created using the <td> and </td> tags (the letters “td” stand for table data, which can be text,

lists, forms, images, etc.).

Basic Table Elements
The following example demonstrates how to use the table, tr, and td elements to construct

a simple table made up of four rows with three cells per row. As you can see, <tr> and </tr>

tags are used to define each row in the table and <td> and </td> tags are used to enclose the

content of every cell in each row.

<table>

 <tr>

 <td>Lakers</td>

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <td>Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

 </tr>

</table>

As Figure 6.4 demonstrates, the browser automatically sizes the table and its rows and cells

based on the contents contained in the table. However, as you will learn in Chapter 8, you

can use CSS to control table formatting.

HTML, XHTML, and CSS for the Absolute Beginner146

FIGURE 6.4

An example of a
table made up of

three rows and
four columns.

Adding Borders to Your Tables
In order to make tables easier for people to view and understand, it is often helpful to add a

border to them, showing the outer edges of the table while also distinguishing rows and cells.

To accomplish this feat, all you have to do is to add the border attribute to the form element,

as demonstrated here:

<table border = "1">

 <tr>

 <td>Lakers</td>

 <td>Celtics</td>

 <td>Magic</td>

 <td>Cavaliers</td>

 </tr>

 <tr>

 <td>Los Angeles</td>

 <td>Boston</td>

 <td>Orlando</td>

 <td>Cleveland</td>

 </tr>

 <tr>

 <td>West</td>

 <td>East</td>

 <td>East</td>

 <td>East</td>

 </tr>

</table>

Chapter 6 • Designing Tables and Forms 147

As you can see, the table element’s border attribute has been assigned a value of 1. This

instructs the browser to draw a 1-pixel thick border around the table and its rows and cells.

When rendered, this example displays the table shown in Figure 6.5.

FIGURE 6.5

An example of a
table with a border
set to a thickness

of 1.

Figure 6.6 shows an example of how the table would look if you changed the value assigned

to the border attribute from 1 to 10.

FIGURE 6.6

An example of a
table with a border
set to a thickness

of 10 pixels.

Note that in both examples, the browser automatically left aligns the table’s data.

Playing Nice with Non-Graphic Browsers
Unfortunately, non-visual browsers can have trouble rendering tables. To help ensure that

these browsers display table data in a useful fashion, use the summary and scope elements when

defining (X)HTML tables. The summary element provides a text string that can be used by

browsers that reply on text-to-voice speech synthesizers. This element is ignored by visual

browsers. The scope element helps non-visual browsers determine how to lay out a table by

providing header information that helps identify columns (col) and rows (row).

HTML, XHTML, and CSS for the Absolute Beginner148

The following example demonstrates how to use both the table element’s summary attribute

and the td element’s scope attribute.

<table border = "1" summary = "Popular NBA Basketball Teams">

 <tr>

 <<td scope = "col">Team</td>

 <<td scope = "col">City</td>

 <<td scope = "col">Conference</td>

 </tr>

 <tr>

 <<td scope = "row">Lakers</td>

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <<td scope = "row">Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <<td scope = "row">Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

 <tr>

 <<td scope = "row">Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

 </tr>

</table>

Figure 6.7 demonstrates how this example looks when viewed using the Lynx text-only

browser.

Chapter 6 • Designing Tables and Forms 149

FIGURE 6.7

An example of a
table displayed
using the Lynx

browser.

Assigning a Table Heading
You may find it helpful to display a heading for your tables, providing a high-level description

of its contents. The way to do this is to use the caption element, as demonstrated in the

following example.

<table border = "1" summary = "Popular NBA Basketball Teams">

<caption>Popular NBA Teams</caption>

 <tr>

 <td scope = "col">Team</td>

 <td scope = "col">City</td>

 <td scope = "col">Conference</td>

 </tr>

 <tr>

 <td>Lakers</td>

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <td>Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

HTML, XHTML, and CSS for the Absolute Beginner150

 <tr>

 <td>Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

 </tr>

</table>

To add a caption to a table, you must embed the caption’s text between <caption> and

</caption> tags. You are limited to one caption element per table and that element should be

placed after the table’s opening tag. Figure 6.8 provides an example of how this table will look

when loaded by the browser.

FIGURE 6.8

An example of a
table with a table

heading.

Note that the heading displayed by the caption element is always displayed above the table

and not within the table itself.

Defining Heading Row and Column Headings
It is often useful to add a heading to a table at the top of each column (col) or to the left of

each row (row). To do so, you use the th element, as demonstrated in the following example.

<table border = "1" summary = "Popular NBA Basketball Teams">

 <caption>Popular NBA Teams</caption>

 <tr>

 <<th scope = "col">Team</th>

 <<th scope = "col">City</th>

 <<th scope = "col">Conference</th>

 </tr>

 <tr>

 <td>Lakers</td>

Chapter 6 • Designing Tables and Forms 151

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <td>Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

 </tr>

</table>

Figure 6.9 shows how this table will look once loaded by a browser.

FIGURE 6.9

An example of a
table with a

column heading.

Row and column headings are typically displayed in bold to make them stand out and are

usually centered within their cells.

HTML, XHTML, and CSS for the Absolute Beginner152

Merging Table Cells
One neat structural trick that you often see in (X)HTML tables is the use of merged cells, in

which two or more cells are merged together to create a single large cell. Merged cells can be

used to display multi-column or multi-row headings. To merge cells horizontally across a

table, you need to add the colspan attribute to the appropriate th or td element. Similarly, to

merge cells vertically in a table, you need to add the rowspan attribute to the appropriate th

or td element. The following example demonstrates how to use the colspan attribute to set

up a table header that spans the entire top row of a table.

<table border = "1" summary = "Popular NBA Basketball Teams">

 <caption>Popular NBA Teams</caption>

 <tr>

 <<th colspan = "3">2008 - 2009 Season</th>

 </tr>

 <tr>

 <th scope = "col">Team</th>

 <th scope = "col">City</th>

 <th scope = "col">Conference</th>

 </tr>

 <tr>

 <td>Lakers</td>

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <td>Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

Chapter 6 • Designing Tables and Forms 153

 </tr>

</table>

Note that in this example, colspan has been assigned a value of 3, instructing the browser to

span the header across all three cells in the table. Figure 6.10 shows how the table looks when

the (X)HTML page that contains it is loaded into the browser.

FIGURE 6.10

An example of
how to merge

table cells.

COLLECTING USER INPUT THROUGH FORMS

Communication on the Internet is a two way street, facilitated by things like email and instant

messaging. One way that many websites interact with their visitors is through forms. A

form is a location on a web page where visitors can provide input. Forms are made up of

controls like text fields, check boxes, radio buttons, drop-down lists, and push buttons. The

data collected by a control is that control’s value. To work with a control, your visitors must

select it, placing focus on the control. To submit form data, most forms require that visitors

click on a Submit button, at which time the form’s data is packed up and sent to a form

handler.

Forms are defined using the form element, which is made up of an opening <form> tag and a

closing </form> tag. Once filled in, forms are processed by a form handler. A form handler is a

program or script that usually executes on a web server, although a form’s handler can instead

be a JavaScript located on the same document as the form. Its purpose is to validate and

process the contents of forms. This may mean storing the user’s input in a server database or

file or using it to generate a highly customized web page.

When submitted, form data is sent to a form handler as name/value pairs.
Therefore, one of the requirements of every form is that all form elements be
named.

HINT

HTML, XHTML, and CSS for the Absolute Beginner154

Forms have one required attribute. This attribute is action. It is used to specify the URL of the

form handler. Another optional form element attribute that is usually used is the method

attribute. This attribute specifies how to send data to a web server for processing by the form

handler. The method attribute supports the following values.

• gget. Sends form contents to the form handler by adding it to the URL string.

• ppost. Sends form contents to the form handler using the Hypertext Transfer Protocol.

In addition to sending form data using the form element attribute’s get and
post options, you can also send form data via email. When you use this option,
the form data is sent as a text file made up of name/value pairs. Though not
practical for large amounts of data, this option can be used effectively in situa-
tions where small amounts of data are transmitted. To use this option, you must
formulate the form element as demonstrated next. Note the use of the required
mailto: keyword, which is separated from the desired email address by a colon.

<form action = "mailto:xxx@website.com" action = " post">

Including a statement like this one in your web documents opens them up to
spammers who search the internet looking for email accounts to add to their
email lists, so use this option sparingly.

If the method attribute is omitted, a default of get is assumed. The following example shows

an XHTML document that can be used as a template for creating forms that send form data

to a form handler. In this example, the form data is sent to a form handler script named

processdata.cgi, which resides on the same server as the web document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 6 - Building Forms</title>

 </head>

 <body>

 <<form action = "/cgi-bin/processdata.cgi" method = "post">

TRICK

Chapter 6 • Designing Tables and Forms 155

 <</form>

 </body>

</html>

As you can see, the form element is block level. In addition, it can only contain other block-

level elements. If inline elements are to be used, they must be placed within block-level

elements inside the form.

The form element provides a structure within which specialized form elements are stored. In

addition to specialized form elements, forms can also contain regular (X)HTML elements, like

paragraphs and headings, or any other (X)HTML element that adds to the forms structure.

Defining Controls Using the input Element
One of the most versatile and commonly used form elements is the input element. It can be

used to generate a wide variety of different types of form controls. The input element is an

inline element, so to use it you must enclose it within a block element as you will see demon-

strated repeatedly in the many form examples that follow. The range of controls that you can

generate using the input element is listed here:

• Text fields

• Password fields

• File controls

• Checkbox controls

• Radio buttons

• Button controls

• Image control

• Hidden control

• Submit button

• Reset button

To tell the browser what type of control you want when working with the input element, you

must specify the control’s type using the input element’s type attribute. The browser will then

generate the corresponding type of control when the form is rendered.

HTML, XHTML, and CSS for the Absolute Beginner156

Creating Text Controls
If you add an input element to a form and set its type attribute’s value to text (input type =

"text"), a single-line text field control is added to your form. By default, most browsers will

display the text field as a rectangular text control with a text background and an inset border.

Most browsers will automatically set the text field’s length to approximately 25 characters

wide.

Text fields are perfect for collecting small amounts of text input from your visitors. If you

need to collect more than a few words, you should use the textarea control, discussed later

in this chapter. The following example demonstrates how to create a table containing a text

control.

<p>

 <label for = "name">Enter your name:</label>

 <input type = "text" id = "name" name = "name" size = "20"

 maxlength = "20" value = "Enter your name here" />

</p>

As you can see, the input element that is defined in this example specifies a number of optional

attributes that further configure the resulting text control. The attributes are explained here:

• ssize. Sets the width, in terms of number of characters, of the text field.

• mmaxlength. Defines the total number of characters of input (including blank spaces)

that the text field can accept.

• vvalue. Specifies a text string to be displayed inside the text field as its default input.

Figure 6.11 shows how the previous example looks when loaded into the web browser.

FIGURE 6.11

Using a text
control to collect

text input from
your visitors.

Creating Password Controls
A password control is a text field with a twist—any text typed into it is masked using asterisks

or bullet characters to prevent it from being seen by spying eyes. To add a password control

Chapter 6 • Designing Tables and Forms 157

to a form, all you have to do is add an input element to a form and set its type attribute’s value

to password (input type = "password"). A password control is a single-line text field. By default,

most browsers will display the text field as a rectangular text control with a text background

and an inset border.

The following example demonstrates how to add a password control to a form.

<p>

 <label for = "password">Enter your password:</label>

 <input type = "password" id = "password" name = "password"

 size = "10" maxlength = "10" />

</p>

As you can see, in this example the input element specifies a number of optional attributes.

These include the size and maxlength attributes, which work exactly the same here as they do

for the text control. If you want, you can use the value attribute to add a default value for the

control, though its usage with this control is certainly questionable.

Figure 6.12 shows how the previous example looks when loaded into the web browser.

FIGURE 6.12

Using a password
control to prevent

snooping eyes
from seeing text

input.

Creating File Controls
By setting the input element’s type attribute to file (input type= "File"), you can add a control

to your form that allows your visitors to select and upload files from their computer as part

of the form’s data. This control usually displays as a text field with a corresponding button

that when clicked displays a standard file dialog. Visitors can specify the file to upload by

selecting it via this dialog or by simply keying in the location of the file directly to the control’s

text field. You can control the width of the control’s text field by setting the input element’s

size attribute to a desired length (in characters).

The following example demonstrates how to add a file control to a form.

HTML, XHTML, and CSS for the Absolute Beginner158

<p>

 <label for = "file">Upload your file:</label>

 <input type = "file" id = "file" name = "file"

 size = "50" accept = "text/css, text/html, text/plain" />

</p>

Note the addition of the accept attribute, which is used to specify MIME types, restricting the

types of files displayed in the standard dialog window to only those specified. Figure 6.13

shows how this example looks when loaded by the Internet Explorer browser.

FIGURE 6.13

Using a file control
to allow visitors to

upload files as
form input as seen

using Internet
Explorer.

Figure 6.13 shows the file control as it will appear on most web browsers. One exception is

Apple Safari, which, as demonstrated in Figure 6.14, does not display a text field as part of

the control. Instead, Safari displays only the file’s name (without its path) and a small icon,

identifying the selected file’s type.

FIGURE 6.14

Using a file control
to allows visitors
to upload files as

form input as seen
using Apple Safari.

Creating Checkbox and Radio Controls
Another way of collecting visitor input is through the use of checkbox and radio controls. A

checkbox control is a control that displays a small square, which visitors can click on to select

or unselect the control. A selected checkbox control displays a checkmark or similar character

inside the control. An unselected checkbox simply appears as an empty box.

Chapter 6 • Designing Tables and Forms 159

Checkbox controls are useful in situations when you want your visitors to select between two

choices. You can display a series of checkbox controls to present visitors with individual

choices, in which case each checkbox control works independently of the other checkbox

controls. Checkbox controls are created by setting the input element’s type attribute to

checkbox (type= "checkbox").

Checkbox controls are normally displayed within a label element, which provides descriptive

text that lets visitors know what the checkbox control’s choices represent. Usually, you will

want to use the input element’s value element to assign a value to your checkbox controls.

This value is returned as part of the form’s data to the form’s handler if the checkbox control

has been checked. If you want, you can pre-check a checkbox control by assigning the input

element’s checked attribute a value of checked (checked = "checked").

Radio controls are similar to checkbox controls in that they allow visitors to choose options.

They differ from checkbox controls in that radio controls can be configured to work in groups

(just assign every radio control the same name). When used in groups, radio controls work

very much like buttons on stereo radios in that you may have many buttons to choose but

only one can be selected (pressed) at a time.

Like checkbox controls you can and should always use the input element’s value attribute to

assign a value to a radio control; otherwise, the form handler won’t be able to tell which radio

button was pressed. You may also use the checked attribute to pre-select a given radio control.

The following example demonstrates how to work with both the checkbox and radio controls.

<p>Pick your size:</p>

<p>

 <input type = "checkbox" id = "checkbox1" name = "checkbox1"

 value = "Small" checked = "checked" />

 <label for = "checkbox1">Small</label>

 <input type = "checkbox" id = "checkbox2" name = "checkbox2"

 value = "Medium" />

 <label for = "checkbox2">Medium</label>

 <input type = "checkbox" id = "checkbox3" name = "checkbox3"

 value = "Large"/>

 <label for = "checkbox3">Large</label>

 <input type = "checkbox" id = "checkbox4" name = "checkbox4"

 value = "Extra Large" />

 <label for = "checkbox4">Extra Large</label>

</p>

<p>Choose a color:</p>

HTML, XHTML, and CSS for the Absolute Beginner160

<p>

 <input type = "radio" id = "radio1" name = "radio"

 value = "Red" />

 <label for = "radio1">Red</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "Blue" checked = "checked" />

 <label for = "radio2">Blue</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "Green" />

 <label for = "radio3">Green</label>

</p>

Figure 6.15 shows how this example will look when rendered by the browser.

FIGURE 6.15

Letting visitors
make selections
using checkbox

and radio button
controls.

Creating Button Controls
By assigning an input element type attribute a value of button (input type = "button") you

can add a button control to a form. Button controls do not perform any predetermined func-

tions. Instead, they are generic controls that are usually used to trigger the execution of

JavaScript. Button controls can display text, set by assigning a text string to the input ele-

ment’s value attribute. The following example demonstrates how to add button controls to

a form.

<p>

 <input type = "button" id = "button1" name = "button1"

 value = "Open" />

 <input type = "button" id = "button2" name = "button2"

 value = "Save" />

 <input type = "button" id = "button3" name = "button3"

Chapter 6 • Designing Tables and Forms 161

 value = "Print" />

 <input type = "button" id = "button4" name = "button4"

 value = "Help" />

</p>

Figure 6.16 shows how the resulting form looks when rendered by a browser.

FIGURE 6.16

Buttons provide a
way for your

visitors to initiate
the execution of

specific
commands.

Creating Image Controls
In addition to working with generic button controls, you also have the option of using graph-

ics as a substitute for buttons. To set this up all you have to do is assign a type of image to an

input element (input type = "image"). You can then use the input element’s src attribute to

specify the URL of the graphic to be displayed and the alt attribute to specify an alternative

test string for non-graphic browsers.

In most cases, you will want to use graphics that are designed to look like buttons
when working with this type of control. There are plenty of free websites that
you can visit that will help you create graphic buttons for your web pages. (Check
out www.buttongenerator.com as an example of one such site.)

The following example demonstrates how to add a series of three graphic button controls to

a form.

If you want to re-create this example, you can download copies of the three
graphics that are used from this book’s companion web page
(www.courseptr.com/downloads).

<p>

 <input type = "image" id = "image1" name = "image1"

 src = "start.gif" alt = "Click here to start" />

 <input type = "image" id = "image2" name = "image2"

HINT

HINT

HTML, XHTML, and CSS for the Absolute Beginner162

www.buttongenerator.com
www.courseptr.com/downloads

 src = "quit.gif" alt = "Click here to quit" />

 <input type = "image" id = "image3" name = "image3"

 src = "help.gif" alt = "Click here for help" />

</p>

Figure 6.17 shows how the resulting form looks when this example is loaded into a web

browser.

FIGURE 6.17

You can use any
graphic you want
when creating an

image control.

Creating a Hidden Control
One type of form control that you never see is the hidden control. As its name implies, this

control is kept hidden from the users. Though not often used, web developers sometimes use

the control to store a small piece of information, like a calculated value, in the form. The data

stored in a hidden control is passed along with the rest of the form’s data when submitted to

the form handler.

The following example demonstrates how to add a hidden control to a form. The contents of

a hidden control can easily be manipulated by JavaScripts after the page loads.

<p>

 <input type = "hidden" id = "hidden" name = "hidden"

 value = "12/31/2012" />

</p>

Creating Submit and Reset Button Controls
In addition to creating generic button controls, as demonstrated earlier, you can add two

specialized button controls to your forms. If you assign a type of submit (input type =

"submit") to an input element, you add a Submit button that when clicked, submits form

data to the form handler. The form handler is set by adding the action attribute to the form

element. You can assign the text to be displayed on the Submit button by assigning a text

string to the type attribute’s value attribute. If the value attribute is omitted, a default text

string that says Submit Query or perhaps just Submit is displayed.

Chapter 6 • Designing Tables and Forms 163

If you assign a type of reset (input type = "reset") to an input element, you add a reset button

to your form that when clicked, resets and clears the contents of a form back to its initial

values. You can assign the text string displayed on the Reset button using the input control’s

value attribute. If omitted, a default string of Reset is usually displayed. Few developers use

the Reset button anymore because experience has shown that it is easily accidentally clicked,

frustrating visitors when the data that they have provided unrepentantly disappears.

The following example demonstrates how to add a Submit and Reset button to a form.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 6 - Building Forms</title>

 </head>

 <body>

 <form action = "/cgi-bin/processdata.cgi" method = "post">

 <p>

 <label for = "order_no">Enter your 12 character order number:</label>

 <input type = "text" id = "order_no" name = "order_no" size = "12"

 maxlength = "12" />

 </p>

 <p>

 <<input type = "submit" id = "submit_button" name = "submit_button"

 vvalue = "Retrieve Order Information" />

 <<input type = "reset" id = "reset_button" name = "reset_button"

 vvalue = "Reset Form" />

 </p>

 </form>

 </body>

</html>

Figure 6.18 shows how the form created in this example looks when rendered by the browser.

Note that the default text displayed on the Submit and Reset controls has been modified in

this example.

HTML, XHTML, and CSS for the Absolute Beginner164

FIGURE 6.18

Controlling form
submission and

form reset.

Adding Buttons Using the button Element
As you have seen, you can use the input element to create all kinds of controls. (X)HTML also

supports a number of other form controls, each of which is created using its own specific

element. The button element is one such control. To work with the button element, you must

specify a value of button, submit, or reset for its required type attribute. The button element

works just like the controls created using the input element’s button, submit, and reset types.

The following example demonstrates how to use the button element to add a button to a form.

<p>

 <button type = "button" id = "home_page" name = "home_page">

 Click here to return home

 </button>

</p>

Figure 6.19 shows how the resulting form looks when this example is loaded into a web

browser.

FIGURE 6.19

Defining a custom
button control.

Adding a Multiline Text Field Using the textarea Element
Earlier you learned how to add a single-line text field to a form by assigning a type of text to

the input element’s type attribute. This control is perfect for collecting small amounts of text.

Chapter 6 • Designing Tables and Forms 165

However, if you need to collect anything longer than a single line, you will want to use the

textarea element to create a multiline text field instead. The size of the resulting control is

established by assigning a numeric value to the element’s rows and cols attributes. If the

amount of text that visitors enter exceeds the size of the control, the browser will automat-

ically display scroll bars.

The textarea control is a block-level element, with a starting and ending tag. The following

example demonstrates how to add a textarea control to a form, making it 10 rows tall and

60 characters wide.

<p>

 <label for = "contact_us">Enter your message below:
</label>

 <textarea id = "contact_us" name = "contact_us" rows = "10" cols="60">

 </textarea>

</p>

In this example, the textarea control is displayed as a large multiline text field, as demon-

strated in Figure 6.20.

FIGURE 6.20

Multiline text
fields are perfect

for collecting
large amounts of

text from your
visitors.

Even though it is a block-level control, the textarea element cannot contain other elements.

It can remain empty or it can contain text. If you want, you can pre-populate a textarea control

with text, as demonstrated here:

<p>

 <label for = "contact_us">Enter your message below:
</label>

 <textarea id = "contact_us" name = "contact_us" rows = "10" cols="60">

 To send us a message, overtype this text with your own text.

 </textarea>

</p>

HTML, XHTML, and CSS for the Absolute Beginner166

Adding Drop-Down Lists to Forms
Another type of form control that you have no doubt come across many times on the inter-

net is the drop-down control. You can add drop-down list controls of your own to your forms

using the select and option elements. You can even group and label list contents using the

optgroup element. Two forms of this control are supported. The first is a single-line drop-down

list that expands when clicked to show a list of options from which the user can select. The

second form of this control is a multiline control that displays a specified number of rows

using the select element’s optional size attribute.

Creating Drop-Down Lists Using the select Element
The first step in creating a drop-down list is to use the select element to establish the control,

as shown here:

<p>

 <label for = "select_team">Select your team:</label>

 <select id = "select_team" name = "select_team">

 </select>

</p>

As shown in this example, by default the browser will render a single-line drop down list.

Adding Items to Drop-Down Lists Using the option Element
To create useful drop-down lists, you must populate the select element with items, which is

done using instances of the option element. The option element is made up of an opening

<option> and a closing </option> tag. The option element can only contain text. This text is

displayed as an option in the drop-down list when displayed. Each option appears on a line

by itself. The following example shows a form that consists of a single-line drop-down list that

contains a listing of every team in the NBA.

<p>

 <select id = "select_team" name = "select_team">

 <option value = "" selected = "selected">- Pick a team -</option>

 <option>Celtics</option>

 <option>Nets</option>

 <option>Knicks</option>

 <option>76ers</option>

 <option>Raptors</option>

 <option>Mavericks</option>

 <option>Rockets</option>

 <option>Grizzlies</option>

Chapter 6 • Designing Tables and Forms 167

 <option>Hornets</option>

 <option>Spurs</option>

 <option>Bulls</option>

 <option>Cavaliers</option>

 <option>Pistons</option>

 <option>Pacers</option>

 <option>Bucks</option>

 <option>Nuggets</option>

 <option>Timberwolves</option>

 <option>Trail Blazers</option>

 <option>City Thunder</option>

 <option>Jazz</option>

 <option>Hawks</option>

 <option>Bobcats</option>

 <option>Heat</option>

 <option>Magic</option>

 <option>Wizards</option>

 <option>Warriors</option>

 <option>Clippers</option>

 <option>Lakers</option>

 <option>Suns</option>

 <option>Kings</option>

 </select>

</p>

Figure 6.21 shows how the drop-down list looks when displayed by the browser.

As you can see in Figure 6.21, the drop-down list displays a small arrow button that when

clicked, displays all of the options that have been added. To select an entry from the list, all

the user has to do is click it. The selected option will be returned as the control’s assigned

value when passed to the form’s handler. The list will then collapse and display the selected

entry in a single field. As shown in Figure 6.21, the browser will automatically display a scroll

bar in the event the list of options is too long to be displayed at one time. If you include the

optional width attribute as part of the select element, you can pre-configure the width of the

drop-down list.

HTML, XHTML, and CSS for the Absolute Beginner168

FIGURE 6.21

Drop-down lists
let you present

your visitors with a
pre-determined

list of options
from which to

choose.

By default, the list entry selected by the user is passed as part of the form’s data
to the form handler. If you want to preselect an option, just add the optional
selected attribute to the desired option (selected = "selected"). Typically, the
first option defined in a select element is made the default value as was the case
in the previous example.

If you want, you can substitute the value that is returned when an option is
selected by specifying an optional value attribute to each option element, as
demonstrated here:

<option vvalue = "Boston Celtics"> Boston</option>

<option vvalue = "New Jersey Nets"> Nets</option>

<option vvalue = "New York Knicks"> Knicks</option>

<option vvalue = "Philadelphia 76ers"> 76ers</option>

When one of these four options is selected, the assigned value is returned in
place of the text that the user saw.

Adding Categories to Drop-Down Lists Using the optgroup Element
Sometimes it helps to organize option elements into labeled groups. This is done by embed-

ding optgroup elements within the select element. The optgroup element has a required

label attribute that is displayed within the drop-down lists. Most browsers display the

optgroup element label in bold or italics font. By placing instances of this element at different

locations within this list, you can organize its option elements into groups, as demonstrated

in the following example.

TRICK

Chapter 6 • Designing Tables and Forms 169

<p>

 <select id = "select_team" name = "select_team">

 <option value = "" selected = "selected">- Pick a team -</option>

 <<optgroup label = "Atlantic">

 <option>Celtics</option>

 <option>Nets</option>

 <option>Knicks</option>

 <option>76ers</option>

 <option>Raptors</option>

 <<optgroup label = "Southwest">

 <option>Mavericks</option>

 <option>Rockets</option>

 <option>Grizzlies</option>

 <option>Hornets</option>

 <option>Spurs</option>

 <<optgroup label = "Central">

 <option>Bulls</option>

 <option>Cavaliers</option>

 <option>Pistons</option>

 <option>Pacers</option>

 <option>Bucks</option>

 <<optgroup label = "Northwest">

 <option>Nuggets</option>

 <option>Timberwolves</option>

 <option>Trail Blazers</option>

 <option>City Thunder</option>

 <option>Jazz</option>

 <<optgroup label = "Southeast">

 <option>Hawks</option>

 <option>Bobcats</option>

 <option>Heat</option>

 <option>Magic</option>

 <option>Wizards</option>

 <<optgroup label = "Pacific">

 <option>Warriors</option>

 <option>Clippers</option>

 <option>Lakers</option>

 <option>Suns</option>

HTML, XHTML, and CSS for the Absolute Beginner170

 <option>Kings</option>

 </select>

</p>

Figure 6.22 shows the resulting drop-down list that is created when this example is loaded by

the browser. As you can see, each optgroup element is displayed as a heading in the resulting

drop-down list. Note that the optgroup elements are strictly informational; they cannot be

selected. Only option elements can be selected.

FIGURE 6.22

You can group
drop-down list

options to
improve the

organization of the
list.

Creating a Multiline Drop-Down List
As previously stated, you can use the select element to create a multiline control. To do so,

you must set the optional multiple attribute to multiple (multiple = "multiple") as demon-

strated in the following example. Multiline controls allow users to select one or more options

by holding down the Shift, Control, or Command key while selecting different list options.

<p>

 <select id = "select_team" name = "select_team" size = "20"

 mmultiple = "Multiple">

 <optgroup label = "Atlantic">

 <option>Celtics</option>

 <option>Nets</option>

 <option>Knicks</option>

 <option>76ers</option>

 <option>Raptors</option>

Chapter 6 • Designing Tables and Forms 171

 <optgroup label = "Southwest">

 <option>Mavericks</option>

 <option>Rockets</option>

 <option>Grizzlies</option>

 <option>Hornets</option>

 <option>Spurs</option>

 <optgroup label = "Central">

 <option>Bulls</option>

 <option>Cavaliers</option>

 <option>Pistons</option>

 <option>Pacers</option>

 <option>Bucks</option>

 <optgroup label = "Northwest">

 <option>Nuggets</option>

 <option>Timberwolves</option>

 <option>Trail Blazers</option>

 <option>City Thunder</option>

 <option>Jazz</option>

 <optgroup label = "Southeast">

 <option>Hawks</option>

 <option>Bobcats</option>

 <option>Heat</option>

 <option>Magic</option>

 <option>Wizards</option>

 <optgroup label = "Pacific">

 <option>Warriors</option>

 <option>Clippers</option>

 <option>Lakers</option>

 <option>Suns</option>

 <option>Kings</option>

 </select>

</p>

Here, a multiline drop-down list has been defined. Note that the size attribute has also been

specified, setting the size of the control to 20 lines. Omitting the size attribute puts you at

the mercy of the browser, resulting in inconsistent list presentation. Figure 6.23 shows the

form that is displayed when this example is displayed.

HTML, XHTML, and CSS for the Absolute Beginner172

FIGURE 6.23

Multiline drop-
down lists don’t

collapse down to a
single line and

support multiple
selections.

REFINING FORM STRUCTURE

Like the rest of your (X)HTML pages, you need to ensure that your forms have a structure that

is intuitive and structurally useful. You can use normal (X)HTML elements like headings and

paragraphs to provide structure to your forms. In addition, (X)HTML provides several form-

specific elements that provide additional structure.

Adding Descriptive Text to Controls Using the Label Element
As you have already seen numerous times in this chapter, you can use the label element to

add descriptive text to forms. The label element is an inline element. As demonstrated in the

following example, the label element is used to display text on forms.

<p>

<label for = "username">Enter your name:</label>

 <input type = "text" id = "username" name = "username" size = "20"

 maxlength = "20" value = "Enter your name here" />

</p>

Here, a label element is used to supply a descriptive label for an element named username.

The label element’s optional for attribute is used to associate the label control with a specific

element, based on that element’s name.

Chapter 6 • Designing Tables and Forms 173

Working with the fieldset Element
Another structure form control is the fieldset element, which is a block-level element that

is used to group related collections of form elements into groups. By grouping controls

together into logical collections, you can improve the readability of your forms. Grouping

related form elements together in this manner makes them easier for your visitors to work

with because it makes them more intuitive.

By default, fieldset elements display a thin border around all of the form controls that are

embedded within them. To better understand the advantage of using the fieldset element

to help add structure to your forms, take a look at this example.

<p>Pick your size:</p>

<fieldset>

 <input type = "checkbox" id = "checkbox1" name = "checkbox1"

 value = "Small" checked = "checked" />

 <label for = "checkbox1">Small</label>

 <input type = "checkbox" id = "checkbox2" name = "checkbox2"

 value = "Medium" />

 <label for = "checkbox2">Medium</label>

 <input type = "checkbox" id = "checkbox3" name = "checkbox3"

 value = "Large"/>

 <label for = "checkbox3">Large</label>

 <input type = "checkbox" id = "checkbox4" name = "checkbox4"

 value = "Extra Large" />

 <label for = "checkbox4">Extra Large</label>

</fieldset>

<p>Choose a color:</p>

<fieldset>

 <input type = "radio" id = "radio1" name = "radio"

 value = "Red" />

 <label for = "radio1">Red</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "Blue" checked = "checked" />

 <label for = "radio2">Blue</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "Green" />

 <label for = "radio3">Green</label>

</fieldset>

HTML, XHTML, and CSS for the Absolute Beginner174

Here, a form has been visually organized into two logical sections using two fieldset ele-

ments. The first fieldset element was used to group a collection of four checkbox controls

and the second fieldset element was used to group a set of three radio controls.

Figure 6.24 shows how the resulting form looks when the web page containing it is rendered

by the browser.

FIGURE 6.24

Using fieldset
elements to group

collections of
controls.

You can make your fieldset elements even more useful if you include a legend element when

working with them. A legend element allows you to specify a text string that is displayed as

a special type of heading at the top of the fieldset element. Most browsers place the text

specified by the legend element in the upper-left corner of the fieldset, embedding it within

the fieldset element’s border. When used, the legend element must be embedded within a

fieldset element, usually as its first statement.

As an example of the impact that the legend element has on a fieldset, look at the following

example.

<fieldset>

<legend>Pick your size:</legend>

 <input type = "checkbox" id = "checkbox1" name = "checkbox1"

 value = "Small" checked = "checked" />

 <label for = "checkbox1">Small</label>

 <input type = "checkbox" id = "checkbox2" name = "checkbox2"

 value = "Medium" />

 <label for = "checkbox2">Medium</label>

 <input type = "checkbox" id = "checkbox3" name = "checkbox3"

 value = "Large"/>

Chapter 6 • Designing Tables and Forms 175

 <label for = "checkbox3">Large</label>

 <input type = "checkbox" id = "checkbox4" name = "checkbox4"

 value = "Extra Large" />

 <label for = "checkbox4">Extra Large</label>

</fieldset>

<fieldset>

<legend>Choose a color:</legend>

 <input type = "radio" id = "radio1" name = "radio"

 value = "Red" />

 <label for = "radio1">Red</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "Blue" checked = "checked" />

 <label for = "radio2">Blue</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "Green" />

 <label for = "radio3">Green</label>

</fieldset>

By adding a legend element to a fieldset element, you can strengthen the structure of the

fieldset element’s contents. Figure 6.25 shows how the form created by the previous exam-

ples will look when rendered by the browser.

FIGURE 6.25

Using the legend
element to add a

caption to a
fieldset.

A COMPLETE FORM EXAMPLE

To help tie together everything that you have learned in this chapter about working with

forms, let’s look at a more complete example of a form that is made up of a number of different

elements.

HTML, XHTML, and CSS for the Absolute Beginner176

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 6 - Building Forms</title>

 </head>

 <body>

 <h1>Joe's Custom T-Shirts</h1>

 <form action = "/cgi-bin/processdata.cgi" method = "post">

 <p>

 <label for = "name">Last name: (8 character max.)</label>

 <input type = "text" id = "name" name = "name" size = "8"

 maxlength = "8" />

 </p>

 <p>

 <label for = "number">Jersey number: (2 character max.)</label>

 <input type = "text" id = "number" name = "number" size = "2"

 maxlength = "2" />

 </p>

 <fieldset>

 <legend>Pick your size:</legend>

 <input type = "checkbox" id = "checkbox1" name = "checkbox1"

 value = "Small" checked = "checked" />

 <label for = "checkbox1">Small</label>

 <input type = "checkbox" id = "checkbox2" name = "checkbox2"

 value = "Medium" />

 <label for = "checkbox2">Medium</label>

 <input type = "checkbox" id = "checkbox3" name = "checkbox3"

 value = "Large"/>

Chapter 6 • Designing Tables and Forms 177

 <label for = "checkbox3">Large</label>

 <input type = "checkbox" id = "checkbox4" name = "checkbox4"

 value = "Extra Large" />

 <label for = "checkbox4">Extra Large</label>

 </fieldset>

 <fieldset>

 <legend>Choose a color:</legend>

 <input type = "radio" id = "radio1" name = "radio"

 value = "Red" />

 <label for = "radio1">Red</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "Blue" checked = "checked" />

 <label for = "radio2">Blue</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "Green" />

 <label for = "radio3">Green</label>

 </fieldset>

 <p>

 <input type = "submit" id = "submit_button" name = "submit_button"

 value = "Submit Order Information" />

 <input type = "reset" id = "reset_button" name = "reset_button"

 value = "Reset Form" />

 </p>

 </form>

 </body>

</html>

In this example, a form is defined that will submit the data it collects to a program running

on the web server using the form method’s post method. The first four form elements on the

page are a pair of labels and text controls. The first text control is named name and configured

to be eight characters long and to accept eight characters of input. The second text control is

named number and is set to a size and length of two characters. Note that both pairs of controls

are embedded within their own paragraphs, keeping them separate and meeting XHTML

Strict 1.0’s requirement that all form elements be placed within block-level elements.

HTML, XHTML, and CSS for the Absolute Beginner178

Next, a set of five checkbox controls is displayed. Note that a fieldset control has been used

to visually group the checkbox controls together. A legend element has been added to assign

it a descriptive header. A label element has been included for each checkbox control,

providing a descriptive text string that identifies each checkbox’s value. Also, note that the

first of the four checkbox controls has been pre-selected.

A second fieldset is then used to group four radio controls. Again, a legend element has been

specified. Note that the second radio button has been selected. The last two controls on the

form are a Submit and a Reset button. Figure 6.26 shows how this table looks when rendered

by the browser.

FIGURE 6.26

An example of a
complete form

made up of
multiple form

controls.

ADVICE ON GOOD FORM DESIGN

As you have seen, there is a lot to form design. You have to know how to work with a number

of different types of elements and element attributes. In addition to creating forms that are

functionally correct, you also need to consider the structural and organizational aspects of

your forms. Specifically, you need to make sure that the forms you create are well organized,

easy to fill out, and as intuitive as you can make them.

To design forms that are really useful and easy for your visitors to understand, their layout

should provide a clear and intuitive path that is easy for your visitors to scan and understand

without a lot of work. It is often a good idea to provide your visitors with instructions on how

to fill out your forms, letting them know what information they will need to have on hand

to fill out your form and what you will do with the information they provide to you. If you

Chapter 6 • Designing Tables and Forms 179

do not want to crowd the web page with instructional text, you might instead display a link

at the top of your form to a help page that explains how to complete the form.

As you develop your forms, make sure you always provide labels for every control. Also,

include visual markers where appropriate. Be explicit regarding information that you want

to collect and the format you need it in. For example, if you are using a text field to collect a

person’s birth date and you want that information entered using a format of mm/dd/yy, then

make sure the control’s label tells the user what format to use when keying in their birth

date.

Always keep an eye on the overall layout of your forms. Present form controls in a logical

matter. Group related controls together and when appropriate take advantage of fieldsets as

a means of grouping related elements together. This can help make your forms easier for your

visitors to scan. It also helps to point out any relationships between related controls.

If your forms have required fields, mark them as such so that your visitors know precisely

what information they need to provide. One way of doing this is to place an asterisk beside

these fields. Alternatively, you might make the labels for these fields bold or display them in

a different color.

Always keep in mind that filling out large and complex forms is not a lot of fun. This can

discourage your visitors. As a general rule, do your best to keep things short and simple.

Whenever possible, streamline your forms by eliminating the collection of unnecessary

optional data. Also, when possible, provide default values for your controls. If your visitors

need to change these values, they can; otherwise, they can simply accept these values and

move along.

If you have added text controls to your form and limited the amount of text they can contain

using the maxlength attribute, make sure that you let your visitors know about the limitation.

If your website makes use of multiple forms, be consistent in their design and presentation.

Once you have learned how to work with JavaScript, covered in Chapter 9, make
sure that you include scripts in your web page that validate form content and
user feedback when errors are found. Also, consider providing examples of valid
input when informing a visitor that invalid input has been collected in one of the
form’s controls.

BACK TO THE NUMBER GUESSING GAME

All right, now it is time to return your attention to this chapter’s project, the Number

Guessing Game. The object of this game is to guess a randomly generated secret number in

as few guesses as possible. To submit guesses, the player must click on one of ten radio buttons,

representing guesses of 1 to 10. Once the player makes a selection, he must click on a button

HINT

HTML, XHTML, and CSS for the Absolute Beginner180

labeled Check Guess in order to signal the end of the current turn. The game will then process

the player’s input using a JavaScript and determine whether the player’s guess was correct,

too low, or too high.

Designing the Application
The development of this game will be performed in a number of steps, as outlined here:

1. Create a new XHTML document.

2. Outline the document’s markup.

3. Develop the document’s JavaScript.

4. Load and test the HTML page.

Step 1: Creating a New XHTML Document
As has been the case with all of the web projects that you have worked on up to this point in

the book, the first step in the creation of this game project is to create a new text file. Do so

using your preferred code or text editor, naming the file NumberGuess.html and storing it

in the same folder as all of your other (X)HTML projects.

Step 2: Developing the Document’s Markup
The next step in the creation of the Number Guessing Game is to assemble the web document’s

markup. Create these statements by adding the following elements to the NumberGuess.html

file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Number Guessing Game</title>

 </head>

 <body>

 </body>

</html>

Chapter 6 • Designing Tables and Forms 181

As you can see, all of the statements needed to create a well-formed XHTML page have been

provided, including the web page’s meta and title elements. Once you have completed this

task, it’s time to add the statements representing the document’s content, which consists of

a heading, followed by a paragraph, and then a form. To do so, embed the following state-

ments into the document’s body section.

<h1>The Number Guessing Game</h1>

<p>Try to guess the secret number in as few guesses as possible</p>

<form action = "NumberGuess.html">

 <p>Select Number:</p>

 <input type = "radio" id = "radio1" name = "radio" value = "1" />

 <label for = "radio1">1</label>

 <input type = "radio" id = "radio2" name = "radio" value = "2" />

 <label for = "radio2">2</label>

 <input type = "radio" id = "radio3" name = "radio" value = "3"/>

 <label for = "radio3">3<label>

 <input type = "radio" id = "radio4" name = "radio" value = "4" />

 <label for = "radio4">4</label>

 <input type = "radio" id = "radio5" name = "radio" value = "5" />

 <label for = "radio5">5</label>

 <input type = "radio" id = "radio6" name = "radio" value = "6" />

 <label for = "radio6">6</label>

 <input type = "radio" id = "radio7" name = "radio" value = "7" />

 <label for = "radio7">7</label>

 <input type = "radio" id = "radio8" name = "radio" value = "8" />

 <label for = "radio8">8</label>

 <input type = "radio" id = "radio9" name = "radio" value = "9" />

 <label for = "radio9">9</label>

HTML, XHTML, and CSS for the Absolute Beginner182

 <input type = "radio" id = "radio10" name = "radio" value = "10" />

 <label for = "radio10">10</label>

 </p>

 <p>

 <button type = "button" name = "validate" onclick = "check_guess()">

 Check Guess

 </button>

 </p>

</form>

The first two statements display a heading and a paragraph that explains the rules for playing

the game. Next, a form named guess_form is created. The data collected by this form will

remain local and will not be passed on to a web server for further processing. As a result, the

form elements required action attribute has been set to NumberGuess.html and the optional

method attribute has been omitted.

The form itself is made up of a series of radio buttons, created using 10 pairs of input and

label elements. Each input element is assigned a numeric value from 1 to 10, representing

the range of guesses allowed by the game. The label element that follows each input element

displays the radio control’s assigned value for the player to see.

The last element that makes up the form is created using a button element. This creates

a button control labeled Check Guess. When clicked, a JavaScript function named

check_guess(), located in a script in the document’s head section, is executed.

When called, the check_guess() function will process the contents of the form
and determine whether the player has won the game or has entered a guess that
is too high or too low. You will learn all about JavaScript functions and their
execution in Chapter 9.

Step 3: Developing the Document’s Script
The Number Guessing Game includes a JavaScript that needs to be located in the document’s

head section. The statements that make up this script, shown below, should be embedded in

the head section, immediately following the document’s title element.

<script type = "text/javascript">

<!-- Start hiding JavaScript statements

 var randomNo = 0;

 var player_choice;

HINT

Chapter 6 • Designing Tables and Forms 183

 randomNo = 1 + Math.random() * 9; //Create random number from 1-10

 randomNo = Math.round(randomNo); //Convert number to an integer

 function check_guess() {

 var radioButtons = document.getElementsByName('radio');

 for (i = 0; i < 10; i++) {

 if (radioButtons[i].checked == true) {

 player_choice = radioButtons[i].value

 //Analyze the player’s guess

 if (player_choice == randomNo) { //See if the guess is correct

 window.alert("Correct! Reload the web page to play again.");

 } else {

 if (player_choice > randomNo) { //See if the guess is high

 window.alert("Incorrect. Your guess was too high.");

 } else { //See if the player's guess is low

 window.alert("Incorrect. Your guess was too low.");

 }

 }

 }

 }

 }

// End hiding JavaScript statements -->

</script>

At a high level, what this script does is declare a pair of variables that will be used to store

both the game’s randomly generated number as well as the player’s guesses. Next, a random

number between 1 and 10 is generated and assigned to the randomNo variable. The rest of the

JavaScript consists of a custom function that is executed each time the player clicks on the

game’s Check Guess button. When executed, this function retrieves the player’s choice and

compares it to the game’s random number. If the two values match, the player wins and the

game ends. Otherwise, a message is displayed in a popup dialog window that lets the player

know whether the guess was too low or too high.

HTML, XHTML, and CSS for the Absolute Beginner184

The Finished HTML Document
At this point, your copy of the GuessNumber.html document should be complete. To make

sure that you have everything in order, look at the following example, which shows what the

finished document should look like.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Number Guessing Game</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var randomNo = 0;

 var player_choice;

 randomNo = 1 + Math.random() * 9; //Create random number from 1-10

 randomNo = Math.round(randomNo); //Convert number to an integer

 function check_guess() {

 for (i = 0; i < document.guess_form.radio.length; i++) {

 if (document.guess_form.radio[i].checked == true) {

 player_choice = document.guess_form.radio[i].value;

 //Analyze the player’s guess

 if (player_choice == randomNo) { //See if the guess is correct

 window.alert("Correct! Reload the web page to play again.");

 } else {

 if (player_choice > randomNo) { //See if the guess is high

 window.alert("Incorrect. Your guess was too high.");

 } else { //See if the player's guess is low

 window.alert("Incorrect. Your guess was too low.");

Chapter 6 • Designing Tables and Forms 185

 }

 }

 }

 }

 if (document.guess_form.radio.value == "5") {

 window.alert("Yup!");

 }

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 <h1>The Number Guessing Game</h1>

 <p>Try to guess the secret number in as few guesses as possible</p>

 <form name = "guess_form" action = "NumberGuess">

 <p>Select Number:</p>

 <input type = "radio" id = "radio1" name = "radio"

 value = "1" />

 <label for = "radio1">1</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "2" />

 <label for = "radio2">2</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "3"/>

 <label for = "radio3">3<label>

HTML, XHTML, and CSS for the Absolute Beginner186

 <input type = "radio" id = "radio4" name = "radio"

 value = "4" />

 <label for = "radio4">4</label>

 <input type = "radio" id = "radio5" name = "radio"

 value = "5" />

 <label for = "radio5">5</label>

 <input type = "radio" id = "radio6" name = "radio"

 value = "6" />

 <label for = "radio6">6</label>

 <input type = "radio" id = "radio7" name = "radio"

 value = "7" />

 <label for = "radio7">7</label>

 <input type = "radio" id = "radio8" name = "radio"

 value = "8" />

 <label for = "radio8">8</label>

 <input type = "radio" id = "radio9" name = "radio"

 value = "9" />

 <label for = "radio9">9</label>

 <input type = "radio" id = "radio10" name = "radio"

 value = "10" />

 <label for = "radio10">10</label>

 </p>

 <p>

 <button type = "button" name = "validate" onclick = "check_guess()">

 Check Guess

 </button>

 </p>

 </form>

Chapter 6 • Designing Tables and Forms 187

 </body>

</html>

Step 4: Loading and Testing the Number Guessing Game
Once you are ready, load your new game into your web browser and see how things have

turned out. To do so, open your browser and execute the following procedure.

1. Click on File > Open File. A standard file open dialog will appear.

2. Navigate to the folder where you stored the web page and select it.

3. Click on the Open button. The browser will load and render our XHTML document, al-

lowing game play to begin.

Assuming that everything works as expected, load your XHTML document using one or two

other browsers in order to ensure that its content displays consistently.

SUMMARY

This chapter showed you how to create and work with tables and forms. Using the information

and examples provided, you should be able to display any type of tabular data and collect

visitor input using all kinds of form controls, including text, password, multiline text, drop-

down list, radio, checkbox, and different types of buttons controls. In addition, this chapter

showed you how to add borders, row, and column headers to your tables and even to merge

multiple cells together in order to create larger cells. You also learned how to use fieldsets to

group form controls together into logical collections in order to make your forms easier to

use. On top of all this, you learned how to create the Number Guessing Game.

Challenges

1. As currently designed, the Number Guessing Game provides

the player with a base minimum of instructions. Consider

modifying the game to provide the player with additional

information on how to play.

2. Consider making the game more challenging by expanding the

range of numbers from 1 to 10 to 1 to 20 or even higher.

HTML, XHTML, and CSS for the Absolute Beginner188

